Find the perimeter and area of a quadrilateral ABCD in which BC = 12 cm, CD = 9 cm, BD = 15 cm, DA = 17 cm and ∠ABD=90∘.
by Pythagoras theorem,
BC=√AB2−AC2
BC=√172−152
BC=√289−225
BC=√64
BC = 8 cm
Perimeter of quadrilateral ABCD = 17 + 9 + 12 + 8 = 46 cm
Area of triangle △ABC=1/2×base×height
△ABC=12×8 x 15
= 60 cm²
NOW, for the area of the triangle, ACD
we will take a = 15 cm, b = 12 cm and c = 9 cm
S = 12(a+b+c)
S = 12(15+12+9)=36/2=18cm
Area of one triangular =√S(S−a)(S−b)(S−c) (Heron's formula)
=√18(18−15)(18−12)(18−9)
=√18×3×6×9
=√18×18×3×3
= 18×3=54cm²
area of quadrilateral ABCD= area of △ABC + area of △ACD
= 60 + 54 = 114 cm²