Find the perpendicular distance from the origin of the line joining the points (cos θ, sin θ) and (cos ϕ, sin ϕ).
Equation of the line joining points (cos θ, sin θ) and (cos ϕ, sin ϕ).
y−sin θ=sin ϕ−sin θccos ϕ−cos θ (x−cos θ)
⇒ (cos ϕ−cos θ)y−sin θ cos ϕ+sin θ cos θ
=(sin ϕ−sinθ)x−sin ϕ cos θ+sin θ cos θ
⇒ (sin ϕ−sin ϕ)x−(cos ϕ−cos θ)y−sin ϕ cos θ+sin θ cos ϕ=0
⇒ (sin ϕ−sin ϕ)x−(cos ϕ−cos θ)y+sin (θ−ϕ)=0
Now perpendicular distance from (0, 0) to the given line is
=∣∣ ∣∣(sin ϕ−sinθ)×0−(cosϕ−cosθ)×0+sin(θ−ϕ)√(sin ϕ−sin θ)2+(cos ϕ−cos θ)2 sin(θ−ϕ)∣∣ ∣∣
=∣∣∣sin (θ−ϕ)√sin2 ϕ+sin2θ−2 sin ϕ sin θ+cos2ϕ+cos2θ−2 cos ϕ cosθ∣∣∣
=∣∣∣sin (θ−ϕ)√2−2(cos θ cos ϕ+sinθ sin ϕ)∣∣∣
=∣∣∣sin(θ−ϕ)√2[1−cos(θ−ϕ)]∣∣∣
=∣∣ ∣ ∣∣sin(θ−ϕ)√2[2 sin2(θ−ϕ2)]∣∣ ∣ ∣∣=|sin (θ−ϕ)|2 sin (θ−ϕ2)