wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the perpendicular distance from the origin of the line joining the points (cos θ, sin θ) and (cos ϕ, sin ϕ).

Open in App
Solution

Equation of the line joining points (cos θ, sin θ) and (cos ϕ, sin ϕ).

ysin θ=sin ϕsin θccos ϕcos θ (xcos θ)

(cos ϕcos θ)ysin θ cos ϕ+sin θ cos θ

=(sin ϕsinθ)xsin ϕ cos θ+sin θ cos θ

(sin ϕsin ϕ)x(cos ϕcos θ)ysin ϕ cos θ+sin θ cos ϕ=0

(sin ϕsin ϕ)x(cos ϕcos θ)y+sin (θϕ)=0

Now perpendicular distance from (0, 0) to the given line is

=∣ ∣(sin ϕsinθ)×0(cosϕcosθ)×0+sin(θϕ)(sin ϕsin θ)2+(cos ϕcos θ)2 sin(θϕ)∣ ∣

=sin (θϕ)sin2 ϕ+sin2θ2 sin ϕ sin θ+cos2ϕ+cos2θ2 cos ϕ cosθ

=sin (θϕ)22(cos θ cos ϕ+sinθ sin ϕ)

=sin(θϕ)2[1cos(θϕ)]

=∣ ∣ ∣sin(θϕ)2[2 sin2(θϕ2)]∣ ∣ ∣=|sin (θϕ)|2 sin (θϕ2)


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Concepts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon