The points are ( cosθ,sinθ ) and ( cosϕ,sinϕ ).
The formula for the equation of line passing through the points ( x 1 , y 1 ) and ( x 2 , y 2 ) is given by,
( y− y 1 )= y 2 − y 1 x 2 − x 1 ⋅( x− x 1 )(1)
Substitute the values of ( x 1 , y 1 ) and ( x 2 , y 2 ) as ( cosθ,sinθ ) and ( cosϕ,sinϕ ) respectively in equation (1).
( y−sinθ )= sinϕ−sinθ cosϕ−cosθ ⋅( x−cosθ ) ( y−sinθ )⋅( cosϕ−cosθ )=( sinϕ−sinθ )⋅( x−cosθ ) y⋅( cosϕ−cosθ )−sinθ( cosϕ−cosθ )=x⋅( sinϕ−sinθ )−cosθ⋅( sinϕ−sinθ ) −x⋅( sinϕ−sinθ )+y⋅( cosϕ−cosθ )=sinθ( cosϕ−cosθ )−cosθ⋅( sinϕ−sinθ )
Further simplify the above expression.
x⋅( sinθ−sinϕ )+y⋅( cosϕ−cosθ )=sinθ⋅cosϕ−sinθ⋅cosθ−cosθ⋅sinϕ−cosθ⋅sinθ x⋅( sinθ−sinϕ )+y⋅( cosϕ−cosθ )=sin( θ−ϕ ) x⋅( sinθ−sinϕ )+y⋅( cosϕ−cosθ )+sin( ϕ−θ )=0
Compare the above equation with the general form of equation Ax+By+C=0.
A=( sinθ−sinϕ ), B=( cosϕ−cosθ )and C=sin( ϕ−θ )(2)
The formula for the perpendicular distance of the line Ax+By+C=0 from a point ( x 1 , y 1 ) is given by,
d= | A x 1 +B y 1 +C | A 2 + B 2 (3)
Substitute the values of ( x 1 , y 1 ) as ( 0,0 ), and the values of A, B and C from equation (2) in equation (3).
d= ( sinθ−sinϕ )⋅0+( cosϕ−cosθ )⋅0+sin( ϕ−θ ) ( sinθ−sinϕ ) 2 + ( cosϕ−cosθ ) 2 = | sin( ϕ−θ ) | sin 2 θ+ sin 2 ϕ−2sinθsinϕ+ cos 2 ϕ+ cos 2 θ−2cosϕcosθ = | sin( ϕ−θ ) | ( sin 2 θ+ cos 2 θ )+( sin 2 ϕ+ cos 2 ϕ )−2( sinθsinϕ+cosϕcosθ ) = | sin( ϕ−θ ) | 1+1−2( sinθsinϕ+cosϕcosθ )
Further simplify the above expression.
d= | sin( ϕ−θ ) | 2−2( cos( ϕ−θ ) ) = | sin( ϕ−θ ) | 2( 1−cos( ϕ−θ ) ) = | sin( ϕ−θ ) | 2( 2 sin 2 ( ϕ−θ 2 ) ) = | sin( ϕ−θ ) | 4( sin 2 ( ϕ−θ 2 ) )
Further simplify the above expression.
d= | sin( ϕ−θ ) | 2sin( ϕ−θ 2 )
Thus, the perpendicular distance from the origin to the line joining the points ( cosθ,sinθ ) and ( cosϕ,sinϕ ) is | sin( ϕ−θ ) | 2sin( ϕ−θ 2 ) .