wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the perpendicular distance of the line joining the points (cos θ, sin θ) and (cos ϕ, sin ϕ) from the origin.

Open in App
Solution

The equation of the line joining the points (cos θ, sin θ) and (cos ϕ, sin ϕ) is given below:

y-sinθ=sinϕ-sinθcosϕ-cosθx-cosθcosϕ-cosθy-sinθcosϕ-cosθ=sinϕ-sinθx-sinϕ-sinθcosθsinϕ-sinθx-cosϕ-cosθy+sinθcosϕ-sinϕcosθ=0

Let d be the perpendicular distance from the origin to the line sinϕ-sinθx-cosϕ-cosθy+sinθcosϕ-sinϕcosθ=0

d=sinθcosϕ-sinϕcosθsinϕ-sinθ2+cosϕ-cosθ2d=sinθ-ϕsin2ϕ+sin2θ-2sinϕsinθ+cos2ϕ+cos2θ-2cosϕcosθd=sinθ-ϕsin2ϕ+cos2ϕ+sin2θ+cos2θ-2cosθ-ϕd=12sinθ-ϕ1-cosθ-ϕ

d=12sinθ-ϕ2sin2θ-ϕ2 d=12×2sinθ-ϕsinθ-ϕ2=122sinθ-ϕ2cosθ-ϕ2sinθ-ϕ2d=cosθ-ϕ2

Hence, the required distance is cosθ-ϕ2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon