Find the perpendicular distance of the line joining the points (cos θ, sin θ) and (cos ϕ, sin ϕ) from the origin.
Equation of line passing through (cos θ, sin θ) and (cos ϕ, sin ϕ) is
y−sin ϕ=(sin ϕ,−sin θcos ϕ−cos θ)(x−cos ϕ)
y−sin ϕ=(2 cos θ+ϕ2 sin ϕ−θ2−2 sin θ+ϕ2 sin ϕ−θ2)(x−cos ϕ)
y−sin ϕ=−cot(θ+ϕ2)(x−cos ϕ)
x cot(θ+ϕ2)+y−sin ϕ−cos ϕ cot(θ+ϕ2)=0
Distance of this line from origin,
=∣∣∣ax1by+c√a2+b2∣∣∣
∣∣ ∣ ∣ ∣∣0+0−sin ϕ−cos ϕ cot(θ+ϕ2) ⎷(cos(θ+ϕ2)2+1)∣∣ ∣ ∣ ∣∣
∣∣ ∣∣sin ϕ+cos ϕ cot(θ+ϕ2)cosec(θ+ϕ2)∣∣ ∣∣
=sin ϕ sin(θ+ϕ2)+cos ϕ cot(θ+ϕ2)
=cos(θ+ϕ2−ϕ)
=cos(θ+ϕ−2ϕ2)
D=cos(θ−ϕ2)