The correct options are
A (π8,cosπ8)
B (π4,cosπ4)
The point of intersection is given by
sin3x=cosx=sin(π2−x)⇒3x=nπ+(−1)n(π2−x)
(1) let n be even i.e n=2m
⇒3x=2mπ+π2−x⇒n=mπ2+π8
(2) let n be odd i.e. n=(2m+1)
⇒3x=(2m+1)π−(π2−x)
⇒3x=2mπ+π2+x⇒x=mπ+π4
Now as −π2≤x≤π2
⇒x=π8,π4,−3π8
Thus, point of intersection are
(π8,cosπ8),(π4,cosπ4)(−3π8,cos3π8)