Find the point of intersection of the following pairs of lines :
(i) 2 x - y + 3 = 0 and x + y - 5 = 0 (ii) bx + ay = ab and ax + by = ab. (iii) y=m1 x+am1 and y=m2 x+am2.
(i) 2x−y+3=0⇒y=2x+3
Putting this values in the second equation, we get
x+y−5=0
x+(2x+3)−5=0
x+2x+3−5=0
3x−2=0
x=23
Putting this value in the first equation, we get
⇒ y=2x+3=2×23+3=43+3=133
∴ Point of intersection is (23,133)
(ii) bx+ay=ab ⇒ x=ab−ayb
Putting this value in the second equation, we get
ax+by=ab
a(ab−ayb)+by=ab
a2b−a2y+b2y=ab2
y(b2−a2)=ab(b−a)
y=ab(b−a)b2−a2=abb+a
Putting this value in the firt equation, we get
⇒ x=ab−a(ab)a+bb=aba+b
∴ Point is (aba+b,aba+b)
(iii) y=m1x+am1 and y=m2x+am2
Putting value of y from one equation to another
m1x+am1=m2x+am2
x(m1−m2)=am2−am1=a(m1−m2m1m2)
⇒ x=am1m2
⇒ y=m1x+am1
=m1(am1m2)+am1
=am2+am1
=a(m1+m2m1m2)
Thus, the point of intersection is
(am1m2,a(1m1+1m2))