The correct option is D xmax=−1,xmin=2
Let y=2x3−3x2−12x+12
dydx=6x2−6x−12=6(x2−x−2)
For maximum or minimum ,
dydx=0
⇒x2−x−2=0
⇒(x−2)(x+1)=0
⇒x=2,−1
Now, d2ydx2=12x−6
At x=2, d2ydx2=18>0
Hence, y is minimum at x=2
At x=−1, d2ydx2=−18<0
Hence, y is maximum at x=−1