The correct option is
D (0,2)Given equation of curve is
4x2+a2y2=4a2
x2a2+y24=1
which represents an ellipse .
Let P(acosϕ,2sinϕ) be any point on the ellipse.
Let d be its distance from (0,−2)
Let z=d2=a2cos2ϕ+4(1+sinϕ)2
dzdϕ=−2a2cosϕsinϕ+8(1+sinϕ)cosϕ
dzdϕ=(4−a2)sin2ϕ+8cosϕ
⇒dzdϕ=2cosϕ(−a2sinϕ+4+4sinϕ)
For maximum or minimum,
dzdϕ=0
⇒2cosϕ(−a2sinϕ+4+4sinϕ)=0
⇒cosϕ=0 or sinϕ=4a2−4=1a24−1>1 (rejected) (As given 4<a2<8 or 1<a24<2
So, we have cosϕ=0
∴ϕ=π2
So, the point becomes (0,2).
Also d2zdϕ2=(4−a2)2cos2ϕ−8sinϕ.
=(4−a2)(−2)−8=2(a2−8)=−ive, as 4<a2<8
Hence z=d2 is maximum.