The correct option is D P(−√2,−3√2)
Given: x24+y236=1 and eccentric angle is 5π4 radian.
To Find: Point on the ellipse
Step-1: Compare the given equation with standard form of ellipse.
Step-2: Use the obtained values to find the coordinates of the point.
a=2,b=6
If P is any point on the ellipse, then coordinates of P are (acosθ,bsinθ).
Eccentric angle is θ=5π4.
⇒ The point is: P(2cos5π4,6sin5π4)
⇒P(2×−1√2,6×−1√2)
⇒P(−√2,−3√2)