Given: Hyperbola (x−1)225−(y−1)29=−1, eccentric angle is π6
To Find: Coordinates of the point with eccentric angle π6.
Step - 1: Find the values of a and b
Step - 2: Substitute the values of a and b in the standard parametric coordinates of a point on the translated conjugate hyperbola.
Equation of standard translated hyperbola is (x−h)2a2−(y−k)2b2=1.
On comparing the given hyperbola equation with the standard equation, a=5,b=3,h=1,k=1.
Any point P(θ) on the hyperbola: (h+atanθ,k+bsecθ)
Substituting the values of a,b,h,k and θ we get,
Coordinates of P=(1+(5)tanπ6,1+3secπ6)
⇒P=(1+51√3,1+32√3)
⇒P=(1+5√3,1+6√3)