wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the point on the hyperbola (x1)225(y1)29=1 with eccentric angle π6 radians.

Open in App
Solution

Given: Hyperbola (x1)225(y1)29=1, eccentric angle is π6

To Find: Coordinates of the point with eccentric angle π6.

Step - 1: Find the values of a and b

Step - 2: Substitute the values of a and b in the standard parametric coordinates of a point on the translated conjugate hyperbola.

Equation of standard translated hyperbola is (xh)2a2(yk)2b2=1.

On comparing the given hyperbola equation with the standard equation, a=5,b=3,h=1,k=1.

Any point P(θ) on the hyperbola: (h+atanθ,k+bsecθ)

Substituting the values of a,b,h,k and θ we get,
Coordinates of P=(1+(5)tanπ6,1+3secπ6)

P=(1+513,1+323)

P=(1+53,1+63)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Equation of Hyperbola
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon