Given: Hyperbola (x+2)2100−(y−3)21=1, eccentric angle is π4
To Find: Coordinates of the point with eccentric angle π4.
Equation of standard translated hyperbola is (x−h)2a2−(y−k)2b2=1.
On comparing the given hyperbola equation with the standard equation, a=10,b=1,h=−2,k=3.
Any point P(θ) on the hyperbola: (h+asecθ,k+btanθ)
Substituting the values of a,b,h,k and θ we get,
Coordinates of P(−2+(10)secπ4,3+(1)tanπ4)
⇒P(−2+10√2,3+1)
⇒P(−2+10√2,3+1)