The correct option is B (5√3,8√3)
Given: Hyperbola x225−y216=−1, eccentric angle is π6
To Find: Coordinates of the point with eccentric angle π6.
Step - 1: Find the values of a and b
Step - 2: Substitute the values of a and b in the standard parametric coordinates of a point on the hyperbola.
Equation of standard hyperbola is x2a2−y2b2=1.
On comparing the given hyperbola equation with the standard equation, a=5,b=4.
Any point P(θ) on the hyperbola: (asecθ,btanθ)
Substituting the values of a and b we get,
Coordinates of P=(5tanπ6,4secπ6)
⇒(5√3,8√3)