The correct option is A (6√2,3)
Given: Hyperbola x236−y29=1, eccentric angle is π4
To Find: Coordinates of the point with eccentric angle π4.
Step - 1: Find the values of a and b
Step - 2: Substitute the values of a and b in the standard parametric coordinates of a point on the hyperbola.
Equation of standard hyperbola is x2a2−y2b2=1.
On comparing the given hyperbola equation with the standard equation, a=6,b=3.
Any point P(θ) on the hyperbola: (asecθ,btanθ)
Substituting the values of a and b we get,
Coordinates of P=(6secπ4,3tanπ4)
⇒(6√2,3)