Consider the given expression,
f′(x)=(x−2)4(x+1)3 …….(1)
Differentiate with respect to x we get
f′(x)=(x−2)43(x+1)2+(x+3)34(x−2)3 …(2)
For maxima and minima
f′(x)=0
(x−2)43(x+1)2+(x+3)34(x−2)3=0
(x−2)3(x+1)2[3(x−2)+(x+3)4]=0
(x−2)3(x+1)2[3x−6+4x+12]=0
(x−2)3(x+1)2(7x+6)=0
x=2,x=−1,x=−67
At point x=2,x=−1 f′(x)=0 hence these are point of inflection.
And x=−67 ,f′′(x) is positive ,then function will be maximum.so this is the point of local maxima.