Find the points of local maxima/minima of following functions f(x)=2x3−21x2+36x−20
A
local max. at x=−1, local min. at x=−6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
local max. at x=6, local min. at x=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
local max. at x=1, local min. at x=6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D local max. at x=1, local min. at x=6 f′(x)=6x2−42x+36=0 Or 6(x2−7x+6)=0 Or (x−6)(x−1)=0 x=6 and x=1. f"(x)=12x−42 Now f"(1)=−30 Hence point of maxima. f"(6)=30 Hence point of minima.