Consider the given equation.
f(x)=3x3+6x2−12x+12
Differentiate f(x) with respect to x.
f′(x)=9x2+12x−12
We know that, at local maxima and local minima,
f′(x)=0
9x2+12x−12=0
3x2+4x−4=0
3x2+6x−2x−4=0
3x(x+2)−2(x+2)=0
(x+2)(3x−2)=0
⇒x=−2,23
Now,
f′′(x)=18x+12
Here,
f′′(x)]x=−2=18×(−2)+12=−36+12=−24<0
Therefore, x=−2 is the point of local maxima.
Again,
f′′(x)]x=23=18×(23)+12=12+12=24>0
Therefore, x=23
is the point of local minima.