wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the points of maximum and minimum and the intervals of monotonicity of the following functions f(x)=(x1)e3x

Open in App
Solution

f(x)=(x1)e3x
for increasing f(x)>0
and decreasing f(x)<0
f(x)=(x1)ddx(e3x)+e3xddx(x1)
=(x1)ddx3e3x+e3x
=e3x(3x3+1)
e3x(3x2)
Increasing f(x)>0
e3x(3x2)>0
(3x2)>0
x>23xϵ(23,)
and for decreasing f(x)<0
xϵ(,23)
for maxima and minima f(x)=0
e3x(3x2)=0
x=23
f′′(x)=e3xddx(3x2)+(3x2)ddx(e3x)
=e3x(3)+(3x2)3e3x
=3e3x[1+3x2]
=3e3x[3x1]
at x=23
f′′(x)>0
So x=23 is point of local maxima.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon