Let the points of trisection be P(x,y) and Q(h,k)
We know, AP=PQ=QB∴AP:PB=1:2
Co-ordinate by Section formula, (x,y)=(mx2+nx1m+n,my2+ny1m+n)
[1 mark]
P(x,y)=(1(2)+2(−4)1+2,1(−1)+2(3)1+2) =(2−83,−1+63)=(−63,53)∴P=(−2,53)
[1 mark]
Point Q divides segment AB in the ratio 2 : 1.
Co-ordinate of point Q(h,k)=(2×2+1×(−4)2+1,2×(−1)+1×32+1)Q(h,k)=(03,13)=(0,13)
∴ Coordinates of the points of trisection are (−2,53) & (0,13).
[1 mark]