The correct options are
A ⎛⎝√c2(a+b),−√c2(a+b)⎞⎠
D ⎛⎝√c2(a+b),√c2(a+b)⎞⎠
Differentiating with respect to x, we get
2ax+2ay.y′+2by+2bxy′=0
Or
ax+by+y′(ay+bx)=0
Or
y′=−(ax+by)ay+bx
Hence slope of normal
−1y′=ay+bxax+by
Now distance from origin of a point lying on the above curve is minimum when it lies on the normal.
Let the point be x1,y1
Slope of the line will be =y1x1 ...(joining the origin and the point).
Hence
ay1+bx1ax1+by1=y1x1
Or
ay1.x1+bx21=ax1y1+by21
Or
x1=±y1.
Now if x1=y1=k,
we get
ak2+2bk2+ak2=c
Or
2k2(a+b)=c
Or
x=y=√c2(a+b).
If x=−y we get
ax2−2bx2+ax2=c
2x2(a−b)=c
Or
x=√c2(a−b).
And
y=−√c2(a−b)