y=x3−2x2−x...(1)letpointscurveos(x1,y1)differentiatew.r.t.xdydx=d(x3−2x2−x)dxdydx=3x2−4x−1slope=dydx3x−y+1=0....(1)y=3x+1slop=3whichisparallelthen3x2−4x−1=33x2−4x−4=03x2−6x+2x−4=03x(x−2)+2(x−2)=0(3x+2)(x−2)=0x=−23.orx=2puttingx=−23orx=2inequatin(1)y=−827−89+23y=−1427andy=−2thereqpointsare(−23,−1427)and(2,−2)