wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the position and magnitude of the axes of the conics 12x212xy+7y2=48.

Open in App
Solution

12x212xy+7y2=48.....(i)a=12,b=7,h=6tan2θ=2habtan2θ=12127=1252tanθ1tan2θ=1256tan2θ5tanθ6=06tan2θ9tanθ+4tanθ6=03tanθ(2tanθ3)+2(2tanθ3)=0(3tanθ+2)(2tanθ3)=0

tanθ1=23 and tanθ2=32 are the required position of axes.

Changing (i) into polar coordinates

x=rcosθ,y=rsinθr2(12cos2θ12sinθcosθ+7sin2θ)=48(sin2θ+cos2θ)r2=48(sin2θ+cos2θ)12cos2θ12sinθcosθ+7sin2θr2=48tan2θ+481212tanθ+7tan2θtanθ1=23r12=48×49+4812+12×23+7×49=3r1=3

tanθ2=32r22=48×94+481212×42+7×94=16r2=4


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Concepts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon