12x2−12xy+7y2=48.....(i)a=12,b=7,h=−6tan2θ=2ha−btan2θ=−1212−7=−1252tanθ1−tan2θ=−1256tan2θ−5tanθ−6=06tan2θ−9tanθ+4tanθ−6=03tanθ(2tanθ−3)+2(2tanθ−3)=0(3tanθ+2)(2tanθ−3)=0
tanθ1=−23 and tanθ2=32 are the required position of axes.
Changing (i) into polar coordinates
x=rcosθ,y=rsinθr2(12cos2θ−12sinθcosθ+7sin2θ)=48(sin2θ+cos2θ)r2=48(sin2θ+cos2θ)12cos2θ−12sinθcosθ+7sin2θr2=48tan2θ+4812−12tanθ+7tan2θtanθ1=−23r12=48×49+4812+12×23+7×49=3⇒r1=√3
tanθ2=32r22=48×94+4812−12×42+7×94=16r2=4