3x2+2xy+3y2=8.....(i)a=3,b=3,h=1tan2θ=2ha−btan2θ=23−3=∞2tanθ1−tan2θ=∞⇒1−tan2θ=0tanθ=±1⇒θ=45∘,135∘
is the required position of axes.
Chnaging (i) to plar coordinates
x=rcosθ,y=rsinθr2(3cos2θ+2sinθcosθ+3sin2θ)=8(sin2θ+cos2θ)r2=8(sin2θ+cos2θ)3cos2θ+2sinθcosθ+3sin2θr2=8tan2θ+83+2tanθ+3tan2θtanθ1=1r12=8+83+2+3=2⇒r1=√2tanθ2=−1r22=8+83−2+3=4r2=2