wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the position of the centre of the circle circumscribing the triangle whose vertices are the points (2,3), (3,4), and (6,8).

Open in App
Solution

Let (h,k) be the centre of the circle
r=(h2)2+(k3)2=(h3)2+(k4)2=(h6)2+(k8)2
(h2)2+(k3)2=(h3)2+(k4)2(h2)2+(k3)2=(h3)2+(k4)2h2+44h+k2+96k=h2+96h+k2+168k2h+2k=12h+k=6........(i)
Also (h3)2+(k4)2=(h6)2+(k8)2
(h3)2+(k4)2=(h6)2+(k8)2h2+9+6h+k2+168k=h2+3612h+k2+6416k6h+8k=75.......(ii)
substituting (i) in (ii)
6(6k)+8k=752k=7536k=392=1912h=6392=272=1312
So the coordinates of centre (1312,1912)


694610_640677_ans_fa09affdf7c44602b84558bace4f71ce.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Coordinate of a Point in Space
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon