wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the positive integer p, q, r, s satisfying tanπ24=(pq)(rs).

Open in App
Solution

tanπ24=tan(π122)
Let π24=θπ12=2θπ6=4θ
tan4θ=13
2tan(2θ)1tan2(2θ)=13
23tan(2θ)=1tan2(2θ)
tan2(2θ)+23tan(2θ)1=0
tan2θ=23+12+42=4232=23
2tanθ1tan2θ=23
(23)(tan2θ+2tanθ(23)=0
tanθ=2+4+4(23)(23)2(23)
=2+28432(23)

tanθ=1+223(23)
=1+2(31)(23)
=(621)(2+3)
=26222+3263
=6+223
=3(21)+2(12)
tan(π24)=(32)(21)

Given, tan(π24)=(pq)(rs)
p=3,q=2,r=2,s=1


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon