xx+y=yn (1)
yx+y=x2nyn .(2)
Multiplying the above, we get
(xy)x+y=(xy)2n
∴x+y=2n ..(3)
Hence from (1), x2n=yn or (x2)n=yn ∴x2=y
Putting for y in (3), we get
x2+x−2n=0
∴x=−1±√1+8n2
Since we have to find positive solution, x must be +ve.
∴x=−1+√1+8n2
∴y=2n−x=2n−−1+√1+8n2
=4n+1−√1+8n2.