Let us consider 49−10+61=100, therefore, the given problem can be rewritten as:
[(49)+(−10)+(61)]3−(49)3−(−10)3−(61)3
We know the identity: (a+b+c)3−a3−b3−c3=3(a+b)(b+c)(c+a)
Using the above identity taking a=49, b=−10 and c=61, the equation
[(49)+(−10)+(61)]3−(49)3−(−10)3−(61)3 can be factorised as follows:
[(49)+(−10)+(61)]3−(49)3−(−10)3−(61)3=3(49−10)(−10+61)(61+49)=3×39×51×110
=2×(3×3×3)×5×11×13×17=2×33×5×11×13×17
Hence, 1003−493+103−613=2×33×5×11×13×17