Let us consider 68−5+22=85, therefore, the given problem can be rewritten as:
[(68)+(−5)+(22)]3−(68)3−(−5)3−(22)3
We know the identity: (a+b+c)3−a3−b3−c3=3(a+b)(b+c)(c+a)
Using the above identity taking a=68, b=−5 and c=22, the equation
[(68)+(−5)+(22)]3−(68)3−(−5)3−(22)3 can be factorised as follows:
[(68)+(−5)+(22)]3−(68)3−(−5)3−(22)3=3(68−5)(−5+22)(22+68)=3×63×17×90
=2×(3×3×3×3×3)×5×7×17=2×35×5×7×17
Hence, 853−683+53−223=2×35×5×7×17