Let us consider 12+10+8=30, therefore, the given problem can be rewritten as:
[(12)+(10)+(8)]3−(12)3−(10)3−(8)3
We know the identity: (a+b+c)3−a3−b3−c3=3(a+b)(b+c)(c+a)
Using the above identity taking a=12, b=10 and c=8, the equation
[(12)+(10)+(8)]3−(12)3−(10)3−(8)3 can be factorised as follows:
[(12)+(10)+(8)]3−(12)3−(10)3−(8)3=3(12+10)(10+8)(8+12)=3×22×18×20
=(2×2×2×2)×(3×3×3)×5×11=24×33×5×11
Hence, 303−123−103−83=24×33×5×11