Find the principal and general solutions of the following equations.
cot x =−√3
Here cot x =−√3⇒tanx=−1√3, which is negative, so x lies in second or fourth quadrant.
tan x = -1√3 = - tan 300
= tan (1800−300) or tan (3600−300)
= tan 1500 or tan 3300
= tan 5π6 or tan 11π6
Here the prinicipal solutions are 5π6,11π6.
Now tan x =- tan π6
⇒x=nπ+56π where n ϵ Z.