Find the principal argument of (1+i√3).
Given that, (1+i√3)
⇒ z=1−3+2i√3⇒ z=−2+2i√3⇒ tan α=∣∣∣2√3−2∣∣∣=|−√3|=√3 [∵ tan α=∣∣Im(z)Re(z)∣∣]⇒ tan α=tan π3⇒ α=π3∵ Re (z)<0 and Im (z)>0⇒ arg(z)=π−π3⇒ =2π3