Find the principal value of tan-1-3.
Solve using trigonometric rules:
The given inverse trigonometric function is tan-1-3.
Let, tan-1-3=y
⇒ -3=tany [∵tan-1x=y⇒x=tany]
⇒ tany=-3
As we know, the range of principal value of tan-1x lies in -π2,π2
⇒ tany=-tanπ3
⇒ tany=tan-π3 [∵tan-θ=-tanθ]
⇒ y=-π3
So, the principal value of tan-1-3 is -π3.
Hence, the required principal value is -π3.