Find the principal values of the following questions:
cos−1(−12)
Let cos−1(−12)=θ⇒cos θ=−12
We know that the range of principal value of cos−1θis[0,π],
∴ cosθ=−12=−cosπ3=cos(π−cosπ3) (∵cos(π−θ)=−cos θ)
=cos2π3
⇒θ=2π3, where θϵ[0,π]⇒cos−1(−12)=2π3
Hence, principal value of cos−1(−12) is cos2π3
Note cos−1(−θ)≠−cos−1θ