Find the principal values of the following questions:
tan−1(−1)
Let tan−1(−1)=θ⇒tan θ=−1
We know that the range of principal value of tan−1θis(−π2,π2).
∴ tanθ=−1=−tanπ4=tan(−π4) (∵tan(−θ)=−tan θ)
⇒ θ=−π4 where θϵ(−π2,π2) ∴tan−1(−1)=−π4
Hence, the principal value of tan−1(−1) is −π4