We have,
Part (1):-
sec−1(2√3)
Let
sec−1(2√3)=A
⇒secA=2√3
⇒secA=secπ6
⇒A=π6
Or
sec−1(2√3)=A
⇒secA=2√3
⇒secA=sec(2π−π6)∴sec(2π−θ)=secθ
⇒A=11π6
Hence, the principal value of sec−1(2√3)is π6,11π6
Hence, this is the answer.
Part (2):-
sec−1(−2)
Let
sec−1(−2)=B
secB=−2
secB=−secπ3
secB=sec(π+π3)(∴sec(π+θ)=−secθ)
secB=sec(4π3)
B=4π3
Or
sec−1(−2)=B
secB=−2
secB=−secπ3
secB=sec(π−π3)(∴sec(π−θ)=−secθ)
secB=sec(2π3)
B=2π3
Hence, the principal value of sec−1(2)is π3,2π3
Hence, this is the answer.