Find the product: a2+ba+b2
Simplify using the rules of binomial products:
The given expression is a2+ba+b2.
It can be simplified as follows,
a2+ba+b2=a2a+b2+ba+b2 [∵(a+b)(c+d)=a(c+d)+b(c+d)]
⇒a2+ba+b2=a2×a+a2×b2+b×a+b×b2
⇒a2+ba+b2=a2+1+a2b2+ab+b1+2 [∵am×an=am+n]
⇒a2+ba+b2=a3+a2b2+ab+b3
⇒a2+ba+b2=a3+b3+a2b2+ab
Hence, the product of a2+ba+b2 is a3+b3+a2b2+ab.
Find the products:
.