Find the product:
(i) x+y−10 and 12xy.
(ii) (46) ab and (−310)x2y
(iii) (x+y+z+p) and xyzp
(iv) 2x2+6xy−24 and 3ab [4 MARKS]
Application: 1 Mark each
(i)(x+y−10)(12xy)
=12x2y+12xy2−120xy
(ii){(46)ab}{(−310)x2y}
=(46)(−310)abx2y
=−1260abx2y
=−15abx2y
(iii)(x+y+z+p)(xyzp)
=x2yzp+xy2zp+xyz2p+xyzp2
(iv)(2x2+6xy−24)(3ab)
=6x2ab+18abxy−72ab