Find the product of the identity function by the modulus function.
Let f:R→R:f(x)=x and g:R→R:g(x)=|x| be the identity function and the modulus function respectively.
Then, dom (fg)=dom (f)∩dom (g)=R∩R=R
∴(fg):R→R:(fg)(x)=f(x).g(x)
Now, (fg)(x)=f(x).g(x)=x.|x|
=x.{x, when x≥0−x, when x<0={x2, when x≥0−x2, when x<0
Hence, (fg)(x)={x2, when x≥0−x2, when x<0