11x2+16xy−y2−70x−40y+82=0
Δ≠0h2>ab
So the equation represents a hyperbola
11x2+16xy−y2=70x+40y−82∂∂x(11x2+16xy−y2−70x−40y+82=0)22x+16y−70=0........(i)∂∂y(11x2+16xy−y2−70x−40y+82=0)16x−2y−40=0......(ii)
Solving (i) and (ii) we get the centre of the conic as origin
x=135,y=45C:(135,45)
Making the conic central by using the center
11x2+16xy−y2=cc=70x+40y−82c=70.135+40.45−82=13211x2+16xy−y2=132.......(iii)a=11,b=−1,h=8tan2θ=2ha−btan2θ=2×811+1=432tanθ1−tan2θ=434tan2θ+6tanθ−4=04tan2θ+8tanθ−2tanθ−4=04tanθ(tanθ+2)−2(tanθ+2)=0(4tanθ−2)(tanθ+2)=0tanθ1=12,tanθ2=−2
Converting (iii) in
polar form
x=rcosθ,y=rsinθr2(11cos2θ+16sinθcosθ−sin2θ)=132(sin2θ+cos2θ)r2=132(sin2θ+cos2θ)11cos2θ+16sinθcosθ−sin2θr2=132tan2θ+13211+16tanθ−tan2θtanθ1=12r12=132.14+13211+16.12−14=132.54754=13215=445⇒r1=√445r22=132×4+13211−32−4=−66025=−1325r2=√−1325
Product of semi axes =r1r2
r1r2=√445√−1325=44√−35