¯b=^i+2^j+^k and
¯a=2^i+^j+2^kProjection of ¯b onto ¯a is given by
¯a⋅¯b|¯a|2¯a
=(2,1,2)⋅(1,2,1)(√22+12+22)2(2,1,2)
=69(2,1,2)
=23(2^i+^j+2^k)
=43^i+23^j+43^k
Thus, the projection vector is 43^i+23^j+43^k
Let ¯b=¯b1+¯b2 such that ¯b1∥¯a and ¯b2⊥¯a
¯b1=m¯a=m(2^i+^j+2^k), where m is a scalar multiple.
Let ¯b2=p^i+q^j+r^k
Since, ¯b2⊥¯a,¯b2⋅¯a=0
⇒(p^i+q^j+r^k)⋅(2^i+^j+2^k)=0
⇒2p+q+2r=0 ....(1)
Now, ¯b=¯b1+¯b2
⇒^i+2^j+^k=(2m^i+m^j+2m^k)+(p^i+q^j+r^k)
⇒^i+2^j+^k=(2m+p)^i+(m+q)^j+(2m+r)^k
Comparing the components, we get
2m+p=1 ....(2)
m+q=2 ....(3)
2m+r=1 ....(4)
Subtracting (2) from (4), we get r−p=0
⇒p=r ....(5)
From (3), we get m=2−q. Substitute this value of m in (4),
2m+r=1
⇒2(2−q)+r=1
⇒4−2q+r=1
⇒q=r+32 ....(6)
Substitute the values of p and q from (5) and (6) in (1),
2r+r+32+2r=0
⇒4r+r+3+4r=0
⇒r=−13=p
q=r+32=3−132=43
m=2−q=2−43=23
∴¯b1=43^i+23^j+43^k
and ¯b2=−13^i+43^j−13^k