Find the quotient of the identity function by the reciprocal function.
Let f:R→R:f(x) and g:R−{0}→R:g(x)=1x be the identity function and the reciprocal function respectively.
Now, dom(fg)=dom (f)∩dom (g)−{x:g(x)=0}
and {x:g(x)=0}={x:1x=0}=ϕ
∴dom(fg)=[R∩R−{0}]−ϕ=R−[0]
So, fg:R−{0}→R:(fg)(x)=f(x)g(x)=x1x=x2
Hence, (fg)=x2 for all xϵR−{0}.