Find the range of each of the following functions:
(i) f(x)=2−3x, xϵR and x>0
(ii) g(x)=x2+2, xϵR
We have, f(x)=2−3x, where xϵR and x>0
Now, x>0⇒3x>0⇒−3x<0
⇒−3x+2<0+2⇒2−3x<2
⇒f(x)<2⇒f(x)ϵ(−∞,2)
Hence, range (f) =(−∞,2)
(ii) We have, g(x)=x2+2,xϵR
Now, xϵR⇒x2≥0⇒x2+2≥0+2
⇒x2+2≥2⇒g(x)≥2
⇒g(x)ϵ[2,∞)
Hence, range (g) =[2,∞).