We have,
f(x)=18−3sinx …… (1)
Therefore,
8−3sinx≠0
f(x) is defined for all real value x.
Which means,
Domain of f(x) is real number R.(Set of all real numbers.)
Now, from equation (1),
We have,
8−3sinx=1f(x)
sinx=83−13f(x)
Now, we know
that,
sinx∈(1,−1)
So,
83−13f(x)∈(−1,1)
⇒−13f(x)∈(−113,−53)
⇒13f(x)∈(113,53)
⇒1f(x)∈(11,5)
⇒f(x)∈(111,15)
Hence, the range
of this function is (111,15)