y=x2−x+1x2+x+1
∴y(x2+x+1)=x2−x+1∴x2−x+1=x2y+xy+y∴x2−x+1−x2y−xy−y=0∴x2(1−y)+x(−y−1)+(1−y)=0
Discriminant =(−y−1)2−4(1−y)(1−y)
=(y+1)2−4(1−y)2
=y2+2y+1−4(1−2y+y2)
=y2+2y+1−4+8y−4y2
Discriminant =−3y2+10y+1
Range is set for discriminant ≥ 0
∴−3y2+10y+1≥0
∴13≤y≤3
∴Range→[13,3].