Given :
f(x)=(sin−1x)(cos−1x)
we know that sin−1+cos−1x=π2
so, cos−1x=(π2−sin−1x)
f(x)=sin−1x[π2−sin−1x]
f(x)=π2sin−1x−(sin−1x)2
f(x)=2(π4)sin−1x−(sin−1x)2
=−[(sin−1x)2−2(π4)sin−1x+π216−π216]
=−[(sin−1x−π4)2−π216]
f(x)=π216−(sin−1x−π4)2
maximum, when sin−1x−π4=0
so, f(x)max=π216
f(x)minimum, when sin−1x=(−π2)
so, f(x)min=π216−(−π2−π4)2=π216−(−3π4)2
f(x)min=π216−9π216=−8π216=−π22
so, Range of f(x)=[−π22,π216]