wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the range of the given
f(x)=(sin1x)(cos1x)

Open in App
Solution

Given :
f(x)=(sin1x)(cos1x)

we know that sin1+cos1x=π2

so, cos1x=(π2sin1x)

f(x)=sin1x[π2sin1x]

f(x)=π2sin1x(sin1x)2

f(x)=2(π4)sin1x(sin1x)2

=[(sin1x)22(π4)sin1x+π216π216]

=[(sin1xπ4)2π216]

f(x)=π216(sin1xπ4)2

maximum, when sin1xπ4=0

so, f(x)max=π216

f(x)minimum, when sin1x=(π2)

so, f(x)min=π216(π2π4)2=π216(3π4)2

f(x)min=π2169π216=8π216=π22

so, Range of f(x)=[π22,π216]


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Irrational Algebraic Fractions - 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon