The correct option is D [−3,1]
Given: y=x2+2x−4x2−2x+3 ∀ x∈R
⇒y(x2−2x+3)=x2+2x−4
⇒(y−1)x2−(2y+2)x+3y+4=0
On comparing with standard quadratic equation y=ax2+bx+c we get, a=(y−1),b=−(2y+2),c=3y+4.
Here, we have a quadratic expression in x, where x∈R this means the quadratic in x will have two roots and the D of the quadratic will be greater than or equal to 0.
∴D≥0
⇒b2−4ac≥0
⇒(−(2y+2))2−4(y−1)(3y+4)≥0
⇒4y2+4y+8−12y2−20y+16≥0
⇒8y2+16y−24≤0
⇒y2+2y−3≤0
⇒y2+3y−y−3≤0
⇒y(y+3)−(y+3)≤0
⇒(y+3)(y−1)≤0
⇒y∈[−3,1]