Find the range of y such that the equation in x, y+cosx=sinx has a real solution. For y=1, find x such that 0<x<2π.
Open in App
Solution
y=sinx−cosx or y√2=1√2sinx−1√2cosx or y√2=sin(x−π4). For real solution −1≤(x−π4)≤1 or −1≤y√2≤1 If y=1, then sinx−cosx=1 or 1√2=sin(x−π4)=sinπ4 ∴x−π4=nπ+(−1)nπ4 n even, x=2rπ+π2; n odd, x=(2r+1)π ∴x=π/2,π as 0<x<2π.