The correct option is B 3
A=⎡⎢
⎢
⎢
⎢⎣12223242223242523242526242526272⎤⎥
⎥
⎥
⎥⎦
|A|=∣∣
∣
∣
∣∣14916491625916253616253649∣∣
∣
∣
∣∣
C4→C4−C3,C3→C3−C2,C2→C2−C1
∣∣
∣
∣
∣∣13574579979111691113∣∣
∣
∣
∣∣
C4→C4−C3,C3→C3−C2,C2→C2−C1
∣∣
∣
∣
∣∣122241229−22216−722∣∣
∣
∣
∣∣
R2→R2−R1,R3→R3−R1,R4→R4−R1
∣∣
∣
∣
∣∣12223−1008−40015−900∣∣
∣
∣
∣∣
Expanding along last column, we get |A|=0
So, rank of A ≠4
Now, we will look for minors of order 3,
Here, ∣∣
∣∣1223−108−40∣∣
∣∣≠0
Hence, rank of matrix =3