Find the rate of heat flow through a cross section of the rod shown in figure (θ2>θ1). Thermal conductivity of the material of the rod is K.
Tan Φ=r2−r1L=y−r1x
Differentiating w. r to x
r2−r1=Ldydx−0
⇒dydx=r2−r1L
⇒r2−r1Ldx=dyLr2−r1 ...(i)
Qt=kπy2dθdx
Now Qdxt=kπy2dθdx
⇒QLdyt(r2−r1)=kπy2Δθ [From equation (i)]
⇒dθ=QLdyt(r2−r1)kπy2
Integrating both side
⇒∫θ2θ1dθ=QLt(r2−r1)kπ∫r2r1dyy2
⇒(θ2−θ1)=QLt(r2−r1)kπ×[−1y]r2r1
⇒(θ2−θ1)=QLt(r2−r1)kπ×[1r1−1r2]
⇒(θ2−θ1)=QLt(r2−r1)kπ(r2−r1)r2r1
⇒Qt=kπr1r2(θ1−θ2)L