Find the ratio in which P(4, m) divides the line segment joining the points A(2, 3) and B(6, -3). Hence find m.
Open in App
Solution
Let P divides line segment AB in the ratio k : 1.
Coordinates of P P=(m1x2+m2x1m1+m2,m1y2+m2y1m1+m2)(4,m)=(k×6+1×2k+1,k×(−3)+1×3k+1) (4,m) = (6k+2k+1,−3k+3k+1) On comparing, we get (6k+2k+1=4) ⇒6k+2=4+4k ⇒6k−4k=4−2 ⇒2k=2 ⇒k=1 Hence, P divides AB in the ratio 1 : 1. From (i), −3(1)+31+1=m ⇒−3+32=m ⇒m=0